Tugas Softskill Cloud Computing

Cloud computing in general can be portrayed as a synonym for distributed computing over a network, with the ability to run a program or application on many connected computers at the same time. It specifically refers to a computing hardware machine or group of computing hardware machines commonly referred as a server connected through a communication network such as the Internet, an intranet, a local area network (LAN) or wide area network (WAN) and individual users or user who have permission to access the server can use the server’s processing power for their individual computing needs like to run an application, store data or any other computing need. Therefore, instead of using a personal computer every-time to run the application, the individual can now run the application from anywhere in the world, as the server provides the processing power to the application and the server is also connected to a network via internet or other connection platforms to be accessed from anywhere. All this has become possible due to increasing computer processing power available to humankind with decrease in cost as stated in Moore’s law.

In common usage, the term “the cloud” is essentially a metaphor for the Internet.Marketers have further popularized the phrase “in the cloud” to refer to software, platforms and infrastructure that are sold “as a service”, i.e. remotely through the Internet. Typically, the seller has actual energy-consuming servers which host products and services from a remote location, so end-users don’t have to; they can simply log on to the network without installing anything. The major models of cloud computing service are known as software as a service, platform as a service, and infrastructure as a service. These cloud services may be offered in a public, private or hybrid network.Google, Amazon, IBM, Oracle Cloud, Rackspace, Salesforce, Zoho and Microsoft Azure are some well-known cloud vendors.

Network-based services, which appear to be provided by real server hardware and are in fact served up by virtual hardware simulated by software running on one or more real machines, are often called cloud computing. Such virtual servers do not physically exist and can therefore be moved around and scaled up or down on the fly without affecting the end user, somewhat like a cloud becoming larger or smaller without being a physical object.

Advantages

Cloud computing relies on sharing of resources to achieve coherence and economies of scale, similar to a utility (like the electricity grid) over a network.At the foundation of cloud computing is the broader concept of converged infrastructure and shared services.

The cloud also focuses on maximizing the effectiveness of the shared resources. Cloud resources are usually not only shared by multiple users but are also dynamically reallocated per demand. This can work for allocating resources to users. For example, a cloud computer facility that serves European users during European business hours with a specific application (e.g., email) may reallocate the same resources to serve North American users during North America’s business hours with a different application (e.g., a web server). This approach should maximize the use of computing power thus reducing environmental damage as well since less power, air conditioning, rackspace, etc. are required for a variety of functions. With cloud computing, multiple users can access a single server to retrieve and update their data without purchasing licenses for different applications.

The term “moving to cloud” also refers to an organization moving away from a traditional CAPEX model (buy the dedicated hardware and depreciate it over a period of time) to the OPEX model (use a shared cloud infrastructure and pay as one uses it).

Proponents claim that cloud computing allows companies to avoid upfront infrastructure costs, and focus on projects that differentiate their businesses instead of infrastructure. Proponents also claim that cloud computing allows enterprises to get their applications up and running faster, with improved manageability and less maintenance, and enables IT to more rapidly adjust resources to meet fluctuating and unpredictable business demand.Cloud providers typically use a “pay as you go” model. This can lead to unexpectedly high charges if administrators do not adapt to the cloud pricing model.

How Cloud Computing Works

To understand exactly how cloud computing works, let’s consider that the cloud consists of layers -mainly the back end layers and the front end layers. The front layers are the parts you see and interact with. When you access your profile on your Facebook account for example, you are using software running on the front end of the cloud. The back end consists of the hardware and the software architecture that delivers the data you see on the front end.

Clouds use a network layer to connect users’ end point devices, like computers or smart phones, to resources that are centralised in a data centre. Users can access the data centre via a company network or the internet or both. Clouds can also be accessed from any location, allowing mobile workers to access their business systems on demand.

Applications running on the cloud take advantage of the flexibility of the computing power available. The computers are set up to work together so that it appears as if the applications were running on one particular machine. This flexibility is a major advantage of cloud computing, allowing the user to use as much or as little of the cloud resources as they want at short notice, without any assigning any specific hardware for the job in advance.

Characteristics

Cloud computing exhibits the following key characteristics:

  • Agility improves with users’ ability to re-provision technological infrastructure resources.
  • Application programming interface (API) accessibility to software that enables machines to interact with cloud software in the same way that a traditional user interface (e.g., a computer desktop) facilitates interaction between humans and computers. Cloud computing systems typically use Representational State Transfer (REST)-based APIs.
  • Cost: cloud providers claim that computing costs reduce. A public-cloud delivery model converts capital expenditure to operational expenditure.This purportedly lowers barriers to entry, as infrastructure is typically provided by a third party and does not need to be purchased for one-time or infrequent intensive computing tasks. Pricing on a utility computing basis is fine-grained, with usage-based options and fewer IT skills are required for implementation (in-house). The e-FISCAL project’s state-of-the-art repository contains several articles looking into cost aspects in more detail, most of them concluding that costs savings depend on the type of activities supported and the type of infrastructure available in-house.
  • Device and location independence enable users to access systems using a web browser regardless of their location or what device they use (e.g., PC, mobile phone). As infrastructure is off-site (typically provided by a third-party) and accessed via the Internet, users can connect from anywhere.
  • Virtualization technology allows sharing of servers and storage devices and increased utilization. Applications can be easily migrated from one physical server to another.
  • Multitenancy enables sharing of resources and costs across a large pool of users thus allowing for:
  1. centralization of infrastructure in locations with lower costs (such as real estate, electricity, etc.)
  2. peak-load capacity increases (users need not engineer for highest possible load-levels)
  3. utilisation and efficiency improvements for systems that are often only 10–20% utilised.
  • Reliability improves with the use of multiple redundant sites, which makes well-designed cloud computing suitable for business continuity and disaster recovery.
  • Scalability and elasticity via dynamic (“on-demand”) provisioning of resources on a fine-grained, self-service basis in near real-time(Note, the VM startup time varies by VM type, location, os and cloud providers), without users having to engineer for peak loads.
  • Performance is monitored, and consistent and loosely coupled architectures are constructed using web services as the system interface.
  • Security can improve due to centralization of data, increased security-focused resources, etc., but concerns can persist about loss of control over certain sensitive data, and the lack of security for stored kernels. Security is often as good as or better than other traditional systems, in part because providers are able to devote resources to solving security issues that many customers cannot afford to tackle. However, the complexity of security is greatly increased when data is distributed over a wider area or over a greater number of devices, as well as in multi-tenant systems shared by unrelated users. In addition, user access to security audit logs may be difficult or impossible. Private cloud installations are in part motivated by users’ desire to retain control over the infrastructure and avoid losing control of information security.
  • Maintenance of cloud computing applications is easier, because they do not need to be installed on each user’s computer and can be accessed from different places.


Cloud security controls

Cloud security architecture is effective only if the correct defensive implementations are in place. An efficient cloud security architecture should recognize the issues that will arise with security management. The security management addresses these issues with security controls. These controls are put in place to safeguard any weaknesses in the system and reduce the effect of an attack. While there are many types of controls behind a cloud security architecture, they can usually be found in one of the following categories:

  • Deterrent controls

These controls are set in place to prevent any purposeful attack on a cloud system. Much like a warning sign on a fence or a property, these controls do not reduce the actual vulnerability of a system.

  • Preventative controls

These controls upgrade the strength of the system by managing the vulnerabilities. The preventative control will safeguard vulnerabilities of the system. If an attack were to occur, the preventative controls are in place to cover the attack and reduce the damage and violation to the system’s security.

  • Corrective controls

Corrective controls are used to reduce the effect of an attack. Unlike the preventative controls, the corrective controls take action as an attack is occurring.

  • Detective controls

Detective controls are used to detect any attacks that may be occurring to the system. In the event of an attack, the detective control will signal the preventative or corrective controls to address the issue

Grid Computing

Grid computing is the collection of computer resources from multiple locations to reach a common goal. The grid can be thought of as a distributed system with non-interactive workloads that involve a large number of files. What distinguishes grid computing from conventional high performance computing systems such as cluster computing is that grids tend to be more loosely coupled, heterogeneous, and geographically dispersed. Although a single grid can be dedicated to a particular application, commonly a grid is used for a variety of purposes. Grids are often constructed with general-purpose grid middleware software libraries.

Grid size varies a considerable amount. Grids are a form of distributed computing whereby a “super virtual computer” is composed of many networked loosely coupled computers acting together to perform large tasks. For certain applications, “distributed” or “grid” computing, can be seen as a special type of parallel computing that relies on complete computers (with onboard CPUs, storage, power supplies, network interfaces, etc.) connected to a network (private, public or the Internet) by a conventional network interface, such as Ethernet. This is in contrast to the traditional notion of a supercomputer, which has many processors connected by a local high-speed computer bus.

Grid computing combines computers from multiple administrative domains to reach a common goal, to solve a single task, and may then disappear just as quickly.

One of the main strategies of grid computing is to use middleware to divide and apportion pieces of a program among several computers, sometimes up to many thousands. Grid computing involves computation in a distributed fashion, which may also involve the aggregation of large-scale clusters.

The size of a grid may vary from small—confined to a network of computer workstations within a corporation, for example—to large, public collaborations across many companies and networks. “The notion of a confined grid may also be known as an intra-nodes cooperation whilst the notion of a larger, wider grid may thus refer to an inter-nodes cooperation”.

Grids are a form of distributed computing whereby a “super virtual computer” is composed of many networked loosely coupled computers acting together to perform very large tasks. This technology has been applied to computationally intensive scientific, mathematical, and academic problems through volunteer computing, and it is used in commercial enterprises for such diverse applications as drug discovery, economic forecasting, seismic analysis, and back office data processing in support for e-commerce and Web services.

Coordinating applications on Grids can be a complex task, especially when coordinating the flow of information across distributed computing resources. Grid workflow systems have been developed as a specialized form of a workflow management system designed specifically to compose and execute a series of computational or data manipulation steps, or a workflow, in the Grid context.

References :

http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Grid_computing
http://en.wikipedia.org/wiki/Cloud_computing_security
http://www.moneycrashers.com/cloud-computing-basics
http://www.cloud-lounge.org/EN/how-do-clouds-work.html

 

 

 

This entry was posted in Uncategorized. Bookmark the permalink.

Leave a comment